Pandian Lakshmanan | Catalysis | Best Researcher Award

Assoc. Prof. Dr. Pandian Lakshmanan | Catalysis | Best Researcher Award

Associate Professor at Tagore Engineering College, Chennai, India

Dr. P. Lakshmanan is a catalysis researcher with extensive experience in the synthesis and application of metal and alloy nanoparticles supported on metal oxides, porous carbons, and carbon nitride-based catalysts. His work focuses on developing innovative catalytic materials for hydrogen production, pollutant degradation, biomass valorization, and energy storage applications. With a proven track record of impactful research and international collaborations in Korea, Dr. Lakshmanan is a recognized contributor to the fields of heterogeneous catalysis, photocatalysis, and electrocatalysis.

Publication Profile

Scopus

Orcid

Google Scholar

Educational Details

  • PhD in Catalysis – Specialized in Metal/Alloy Nanoparticles and Metal Oxide Supported Catalysts
  • Research Training and Fellowships: Korea Institute of Chemical Technology (KRICT), Daejeon, Korea; Ajou University, Suwon, Korea; Inha University, Incheon, Korea

Professional Experience

Dr. P. Lakshmanan is currently serving as an Assistant Professor in the Department of Chemistry at Tagore Engineering College, Chennai, India, since July 2024. He previously held an Assistant Professorship at Kalasalingam University, India, from December 2016 to January 2023. Dr. Lakshmanan gained extensive international postdoctoral research experience at Inha University, Incheon, Korea (2023-2024), Ajou University, Suwon, Korea (2013-2015), and KRICT-Daejeon, Korea (2011-2012). His diverse academic and research background spans the synthesis, characterization, and catalytic application of advanced nanomaterials and supported catalysts.

Research Interest

  • Development of Nano-catalysts for Heterogeneous Catalysis
  • Photocatalysis and Electrocatalysis
  • Energy Materials for Hydrogen Generation and Supercapacitor Applications
  • Biomass Valorization and Green Chemistry
  • Plasmonic and Single-Atom Catalysis

Top Noted Publication

Alumina surface modified with graphitic carbon nitride: Synthesis, characterization and its application as photocatalyst

  • Authors: V Saravanan, P Lakshmanan, C Ramalingan
  • Journal: Diamond and Related Materials, Volume 114, Article 108291 (2021)
  • Citations: 14
  • Summary: This paper focuses on the synthesis and characterization of alumina (Al₂O₃) surface modified with graphitic carbon nitride (g-C₃N₄). The composite material was evaluated for its photocatalytic performance. The surface modification was aimed at enhancing light absorption, charge separation, and photocatalytic degradation efficiency under visible light irradiation.

Investigations on effect of graphitic carbon nitride loading on the properties and electrochemical performance of g-C3N4/TiO2 nanocomposites for energy storage device applications

  • Authors: R Ranjithkumar, P Lakshmanan, P Devendran, N Nallamuthu, A Arivarasan
  • Journal: Materials Science in Semiconductor Processing, Volume 121, Article 105328 (2021)
  • Citations: 61
  • Summary: This research explores the structural, morphological, and electrochemical properties of g-C₃N₄/TiO₂ nanocomposites with varying g-C₃N₄ loadings. The study investigates their suitability as electrode materials for energy storage devices. Enhanced electrochemical performance was achieved due to improved conductivity and synergistic effects between g-C₃N₄ and TiO₂.

Investigations and fabrication of Ni(OH)2 encapsulated carbon nanotubes nanocomposites based asymmetrical hybrid electrochemical supercapacitor

  • Authors: R Ranjithkumar, S E Arasi, P Devendran, N Nallamuthu, P Lakshmanan, A Arivarasan
  • Journal: Journal of Energy Storage, Volume 32, Article 101934 (2020)
  • Citations: 32
  • Summary: This paper presents the synthesis and electrochemical evaluation of Ni(OH)₂ encapsulated carbon nanotube (CNT) nanocomposites as electrode materials for asymmetric hybrid supercapacitors. The composite exhibited high specific capacitance and improved energy density, attributed to the synergistic effect between CNTs and Ni(OH)₂.

Investigations on structural, morphological and electrochemical properties of Co(OH)2 nanosheets embedded carbon nanotubes for supercapacitor applications

  • Authors: R Ranjithkumar, S E Arasi, P Devendran, N Nallamuthu, A Arivarasan, P Lakshmanan
  • Journal: Diamond and Related Materials, Volume 110, Article 108120 (2020)
  • Citations: 20
  • Summary: The study investigates the synthesis of Co(OH)₂ nanosheets embedded onto carbon nanotubes and their application as electrode materials for supercapacitors. The resulting composite exhibited high capacitance and superior charge storage capacity due to increased surface area and better electron conductivity.

Investigation and fabrication of asymmetrical supercapacitor using nanostructured Mn3O4 immobilized carbon nanotube composite

  • Authors: R Ranjithkumar, S E Arasi, N Nallamuthu, P Devendran, P Lakshmanan, A Arivarasan
  • Journal: Superlattices and Microstructures, Volume 138, Article 106380 (2020)
  • Citations: 42
  • Summary: This paper focuses on the development of an asymmetrical supercapacitor using nanostructured Mn₃O₄ immobilized on carbon nanotubes. The composite demonstrated excellent electrochemical properties, high specific capacitance, and long cycling stability, making it suitable for energy storage applications.

Conclusion:

Assoc. Prof. Dr. Pandian Lakshmanan is a strong candidate for the Best Researcher Award, particularly in the fields of catalysis, nanomaterials, and energy storage. His international research experience, impactful publications, and contributions to emerging areas like hydrogen generation and supercapacitors make him a noteworthy contender. Strengthening his grant portfolio, publishing in top-tier journals, and expanding his industrial collaborations would further solidify his position as a leading researcher in his field.

 

 

Ahmad Ruhan Ali | Photocatalysis | Best Researcher Award

Mr. Ahmad Ruhan Ali | Photocatalysis | Best Researcher Award

Ahmad Ruhan Ali at University of Gujrat, Pakistan

Ahmad Ruhan Ali is a dedicated physicist and researcher specializing in nanomaterials for environmental remediation and energy storage. He earned his BS and MPhil degrees in Physics from the University of Gujrat, Pakistan, where he was recognized as a Gold Medalist. With extensive experience in teaching and research, Ahmad has contributed significantly to the field of photocatalysis and supercapacitors through his innovative work on composite nanostructures.

Publication Profile

Scopus

Educational Details

  • Bachelor of Science in Physics: Ahmad Ruhan Ali completed his BS in Physics at the University of Gujrat, Pakistan, from September 2018 to August 2022, graduating with a CGPA of 3.83 and receiving a Gold Medal for his outstanding performance. His thesis focused on the “Synthesis and Characterization of Bi₂WO₆/TiS₂ Composite Photocatalysts for Dye Degradation.”

  • Master of Philosophy in Physics: He pursued his MPhil in Physics at the University of Gujrat from November 2022 to September 2024, achieving a CGPA of 3.96. His research thesis was titled “To Study the Synergetic Impact of Bi₂WO₆ and Molybdenum-Based MXene Composites for Enhanced Photocatalytic Degradation of Organic Dyes.”

Professional Experience

  • Physics Lecturer at Aspire College Gujrat: From April 16, 2021, to March 9, 2023, Ahmad served as a Physics Lecturer at Aspire College in Gujrat, Pakistan, where he was responsible for teaching undergraduate physics courses and mentoring students.

  • Physics Lecturer at Nayyab Academy, Wazirabad: Since January 1, 2019, he has been imparting physics education at Nayyab Academy in Wazirabad, Punjab, Pakistan, focusing on curriculum development and student assessment.

  • Science Teacher at The Educators School, Wazirabad: Starting from September 19, 2024, Ahmad took on the role of Science Teacher at The Educators School in Wazirabad, where he teaches various science subjects to secondary school students.

Research Interest

  • Photocatalytic degradation of organic pollutants in wastewater.

  • Design and development of nanocomposites for enhanced hydrogen production.

  • Investigation of energy storage capabilities of composite nanostructures.

Author Metric:

  • Bi2WO6/TiS2 composite for methylene blue dye degradation under visible light (2024).
  • BiVO4/TiS2 composite for Rhodamine B dye degradation under visible light (2024).
  • Bi2WO6 and TiS2 composite nanostructures for supercapacitor energy storage (2024).
  • Nb2O5/TiS2 composite for Rhodamine B degradation, hydrogen production, and stability assessment (2025).
  • Cd and Co co-doped Bi2WO6 for methyl orange degradation, hydrogen production, and stability assessment (2024).
  • BiVO4/TiS2 composite for water treatment and hydrogen production (2024).

Top Noted Publication

“A Novel Composite (Bi₂WO₆/TiS₂) Presenting an Excellent Z-Scheme Photocatalytic Degradation for Methylene Blue Dye Under Visible Light Irradiation.”

  • Authors: Muhammad Tanveer, Ahmad Ruhan Ali, Muhammad Abdul Qadeer, Ghulam Nabi.
  • Published in: June 2024.
  • Summary: This study introduces a novel Bi₂WO₆/TiS₂ composite that demonstrates superior photocatalytic activity in degrading methylene blue dye under visible light, attributed to its efficient Z-scheme mechanism.

“A Novel Composite (BiVO₄/TiS₂) Presenting an Excellent Z-Scheme Photocatalytic Degradation for Rhodamine B Dye Under Visible Light Irradiation.”

  • Authors: Muhammad Tanveer, Husnain Haider Cheema, Ghulam Nabi, Ahmad Ruhan Ali, Muhammad Abdul Qadeer.
  • Published in: July 2024.
  • Summary: The research presents a BiVO₄/TiS₂ composite with enhanced photocatalytic performance for degrading Rhodamine B dye, highlighting its potential for wastewater treatment applications.

“Bi₂WO₆ and TiS₂ Composite Nanostructures Displaying Synergetic Boosted Energy Storage in Supercapacitor.”

  • Authors: Muhammad Abdul Qadeer, Ahmad Ruhan Ali, Muhammad Tanveer, Abdelhamid Abdelwanes Sakr.
  • Published in: August 2024.
  • Summary: This paper explores the development of Bi₂WO₆/TiS₂ composite nanostructures that exhibit enhanced energy storage capabilities, making them promising candidates for supercapacitor applications.

“Sun-Light-Driven Photocatalytic Annihilation of Methyl Orange Degradation, Hydrogen Production, and Stability Assessment via Conventional Hydrothermal Preparation of Novel Cd and Co Co-Doped Bi₂WO₆.”

  • Authors: M.A. Qadeer, Ahmad Ruhan Ali, Muhammad Tanveer, Safeera Yasmeen, Ghulam Nabi, Muhammad Tahir.
  • Published in: November 2024.
  • Summary: The study investigates a novel Cd and Co co-doped Bi₂WO₆ photocatalyst that effectively degrades Methyl Orange dye and facilitates hydrogen production under sunlight irradiation.

“Sun-Light-Driven Z-Scheme Photocatalytic Annihilation of Rhodamine B, Hydrogen Production, and Stability Assessment via Facile Hydrothermal Preparation of Novel Nanocomposite Nb₂O₅/TiS₂.”

  • Authors: Muhammad Tanveer, M.A. Qadeer, Ahmad Ruhan Ali, Jineetkumar Gawad, Husnain Haider Cheema, Safeera Yasmeen, Abdulaziz Bentalib, Muhammad Tahir.
  • Published in: February 2025.
  • Summary: This research introduces an Nb₂O₅/TiS₂ nanocomposite with a Z-scheme mechanism, demonstrating efficient photocatalytic degradation of Rhodamine B dye and hydrogen production under sunlight.

Conclusion:

Mr. Ahmad Ruhan Ali is a highly promising researcher with a strong academic record, impactful research in photocatalysis and energy storage, and multiple recent publications in emerging fields. His work directly addresses environmental sustainability and renewable energy challenges, aligning well with global research priorities.

While he is already a strong candidate for the Best Researcher Award, further international collaboration, publication in top-tier journals, and securing research funding can further solidify his standing as a leading researcher in his field.