Shreyam Chatterjee | Sustainable Energy Research | Best Researcher Award

Dr. Shreyam Chatterjee | Sustainable Energy Research | Best Researcher Award

Assistant Professor at OSAKA UNIVERSITY / SANKEN, Japan
Summary:

Dr. Shreyam Chatterjee is a Specially Appointed Assistant Professor in the Department of Soft Nanomaterials at ISIR, Osaka University. He received his Ph.D. in Chemistry from the Indian Association for the Cultivation of Science (IACS), Kolkata, under the guidance of Prof. Arun Kumar Nandi. Dr. Chatterjee’s research interests include the development of novel π-conjugated systems for organic semiconductors used in organic electronics, such as organic solar cells (OSCs) and organic field-effect transistors (OFETs). His contributions to the field of organic photovoltaics have resulted in multiple patents and international recognition. He has secured research funding from prestigious institutions like the University College London (UCL) and Osaka University, highlighting his leadership in developing greener organic photovoltaics. Dr. Chatterjee has also been featured in several prominent publications, including the Journal of Materials Chemistry A and Nikkan Kogyo Shimbun.

Professional Profile:

👩‍🎓Education:

  • Ph.D. in Chemistr(2008-2013): Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, India. Supervised by Prof. Arun Kumar Nandi.
  • B.Ed. (Bachelor of Education) (2007-2008): The University of Burdwan, First Class.
  • M.Sc. in Chemistry (2005-2007): The University of Burdwan, First Class.
  • B.Sc. in Chemistry (2002-2005): Burdwan Raj College, First Class.
    Awarded Memorial Prize for highest marks in practicals.

🏢 Professional Experience:

  • Specially Appointed Assistant Professor, Department of Soft Nanomaterials, ISIR, Osaka University (2021–Present).
    • Research collaboration with Prof. Yutaka Ie, focusing on organic semiconductors for applications in organic electronics.
  • Specially Appointed Assistant Professor, ISIR, Osaka University (2020–2021).
    • Selected from Osaka University for continuation in research related to organic photovoltaics.
  • Specially Appointed Researcher, ISIR, Osaka University (2018–2020).
    • Worked under Prof. Yoshito Tobe on developing π-conjugated systems.
  • Specially Appointed Assistant Professor, ISIR, Osaka University (2017–2018).
    • Research on organic semiconductors with Prof. Yoshio Aso.
  • Specially Appointed Researcher, ISIR, Osaka University (2013–2017).
    • Continued research on developing novel organic acceptor materials with Prof. Yoshio Aso.

Research Interests:

Dr. Shreyam Chatterjee’s research focuses on the development of novel π-conjugated systems for use in organic semiconductors in organic electronics, particularly in organic solar cells (OSCs) and organic field-effect transistors (OFETs). His work emphasizes the creation of large-area processable, lightweight, and flexible organic electronic devices. A key aspect of his research involves developing organic acceptor materials compatible with cost-effective, bulk-available donor polymer poly(3-hexyl thiophene) (P3HT). His innovations have led to power conversion efficiencies of around 6.00% and the production of a 1.00-meter OPV-solar module via a roll-to-roll process for practical applications. His research results have been published in highly reputed international journals, and he has produced multiple patents related to organic semiconductors and solar cells.

Selected Achievements and Honors:

  • 2022: Awarded the University College London (UCL)-Osaka University (OU) Strategic Partner Research Fund for “Developing and understanding new materials for even greener organic photovoltaics” (£10,000).
  • 2021: Awarded the UCL-OU Strategic Partner Research Fund for “Development of Novel Materials for Green Organic Photovoltaics” (£10,000).
  • 2021: Featured as an Emerging Investigator in the Journal of Materials Chemistry A.
  • 2021: Guest Editor for the Frontiers in Materials special issue on Innovators in Energy Materials.
  • 2008: Qualified for the National Eligibility Test (NET) (CSIR) and Graduate Aptitude Test in Engineering (GATE).

Author Metrics:

  • Research Articles: Published in high-impact journals such as Nature CommunicationsJournal of Materials Chemistry A, and others.
  • Citations: His work has been widely cited by the scientific community, reflecting the impact of his contributions to organic electronics and photovoltaics.
  • Patents: Dr. Chatterjee has filed multiple patents for novel organic semiconductor materials and processes

Top Noted Publication:

“Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its…”

  • Authors: S. Chatterjee, R.K. Layek, A.K. Nandi
  • Published in: Carbon, Vol. 52, Pages 509-519, 2013
  • Citations: 81
  • Summary: This study focuses on the morphological transformation of polyaniline (PANI) from nanotubes to flat rectangular nanopipes by polymerizing in the presence of amino-functionalized reduced graphene oxide. The work highlights the impact of graphene oxide on the morphological and conductive properties of polyaniline, which could have implications for its use in advanced materials and electronics.

“Nonfullerene acceptors for P3HT-based organic solar cells”

  • Authors: S. Chatterjee, S. Jinnai, Y. Ie
  • Published in: Journal of Materials Chemistry A, Vol. 9, Issue 35, Pages 18857-18886, 2021
  • Citations: 63
  • Summary: This paper reviews the use of nonfullerene acceptors (NFAs) in P3HT-based organic solar cells, providing an overview of the structural design, synthesis, and performance of these acceptors. It emphasizes the potential of NFAs to improve the efficiency of polymer-based solar cells, which are pivotal for the development of cost-effective and large-area photovoltaic devices.

“Naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole‐Containing π‐Conjugated Compound: Nonfullerene Electron Acceptor for Organic Photovoltaics”

  • Authors: S. Chatterjee, Y. Ie, M. Karakawa, Y. Aso
  • Published in: Advanced Functional Materials, Vol. 26, Issue 8, Pages 1161-1168, 2016
  • Citations: 57
  • Summary: This research introduces a novel naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole‐based nonfullerene electron acceptor for organic photovoltaics (OPVs). The study investigates the material’s electronic properties and its potential for improving the efficiency and stability of OPVs, highlighting its applicability for next-generation solar energy solutions.

“Nanochannel morphology of polypyrrole–ZnO nanocomposites towards dye sensitized solar cell application”

  • Authors: S. Chatterjee, A. Shit, A.K. Nandi
  • Published in: Journal of Materials Chemistry A, Vol. 1, Issue 39, Pages 12302-12309, 2013
  • Citations: 43
  • Summary: This study explores the creation of polypyrrole–ZnO nanocomposites with nanochannel morphology, which are applied in dye-sensitized solar cells (DSSCs). The work examines how the unique morphology of these nanocomposites improves their photovoltaic performance and offers insights into the design of efficient DSSCs.

“Dye-sensitized solar cell from polyaniline–ZnS nanotubes and its characterization through impedance spectroscopy”

  • Authors: A. Shit, S. Chatterjee, A.K. Nandi
  • Published in: Physical Chemistry Chemical Physics, Vol. 16, Issue 37, Pages 20079-20088, 2014
  • Citations: 39
  • Summary: This paper details the fabrication of dye-sensitized solar cells using polyaniline–ZnS nanotubes and investigates their performance through impedance spectroscopy. The research discusses the charge transport and recombination mechanisms within the solar cells, shedding light on improving efficiency in solar energy applications.

Conclusion:

Dr. Shreyam Chatterjee is a highly suitable candidate for the Best Researcher Award, given his exceptional contributions to sustainable energy research through innovative organic electronics. His impactful research, demonstrated through numerous high-impact publications, patents, and international collaborations, positions him as a leader in the field. By further expanding the interdisciplinary reach of his work and increasing his mentorship activities, Dr. Chatterjee can continue to elevate his profile as a pioneering researcher in sustainable energy solutions.

 

Daniel Mutia Mwendwa | Energy Systems | Best Researcher Award

Mr. Daniel Mutia Mwendwa | Energy Systems | Best Researcher Award

Daniel Mutia Mwendwa at University of Oxford, United Kingdom

Summary:

Daniel Mutia Mwendwa is a Rhodes Scholar currently pursuing a DPhil in Engineering Science at the University of Oxford, where his research focuses on geospatial analysis of solar-powered irrigation systems in Sub-Saharan Africa. He holds an MSc in Energy Systems (Distinction) from Oxford and a BEng (First Class Honours) in Electronics and Electrical Engineering from the University of Edinburgh. Co-founder of BuniTek, he is dedicated to introducing technology to African youth. Daniel also works as a Research Assistant in the Climate Compatible Growth Programme, contributing to energy planning in Kenya and global green hydrogen initiatives.

Professional Profile:

👩‍🎓Education:

University of Oxford, UK (2023 – Present)
DPhil in Engineering Science (Rhodes Scholar)

  • Thesis Topic: Geospatial analysis of solar-powered irrigation in Sub-Saharan Africa, focusing on the water, energy, and food nexus.

University of Oxford, UK (2021 – 2022)
MSc in Energy Systems (Distinction, Rhodes Scholar)

  • Thesis: Developed a geospatial methodology for sizing and costing solar-powered irrigation systems for different crops.

University of Edinburgh, UK (2017 – 2021)
BEng (Hons) in Electronics and Electrical Engineering (First Class Honours, MasterCard Foundation Scholar)

  • Thesis: Developed an optimized hybrid energy storage system (HESS) combining battery storage, hydrogen fuel cells, and supercapacitors using MATLAB Simulink.

🏢 Professional Experience:

Rhodes Trust, Oxford, UK (Mar 2024 – Present)
Rhodes Scholarship Ambassador for East Africa

  • Engages with universities across East Africa to introduce students to the Rhodes Scholarship and supports their application process.

University of Oxford, Oxford, UK (Mar 2022 – Present)
Research Assistant, Climate Compatible Growth Programme

  • Developed least-cost electrification pathways for Kenyan counties using the Open-Source Spatial Electrification Tool (OnSSET). Conducted capacity-building workshops on energy planning models like OSeMOSYS and IRENA’s Flextool. Also involved in geospatial modeling of green hydrogen production potential globally.

Loughborough University, Nairobi, Kenya (Nov 2022 – Present)
Research Consultant

  • Designed off-grid electrification solutions for poultry farming and health facilities. Authored academic papers on energy planning and developed funding proposals.

BuniTek, Nairobi, Kenya (Jun 2020 – Present)
Co-Founder

  • Co-founded BuniTek, an initiative that introduces technology concepts to African high school students in an engaging and hands-on manner. Led a team of 15 volunteers to develop 14 new courses.

Research Interests:

Daniel Mutia Mwendwa’s research interests lie in renewable energy systems, particularly in optimizing solar-powered irrigation and hybrid energy storage solutions. He is passionate about integrating geospatial modeling and energy planning to address sustainability challenges in Sub-Saharan Africa. His work also focuses on green hydrogen production, off-grid electrification, and the energy-water-food nexus.

Author Metrics:

Mwendwa has co-authored several research papers and reports, including:

  1. “Spatial Data Starter Kit for OnSSET Energy Planning in Kitui County, Kenya” – Published in Data in Brief (2022).
  2. “Mapping the Energy Planning Ecosystem in Kenya” – Published on GOV.UK (2023).
  3. “County Energy Planning Data Flows in Kenya: Practitioner Perspectives” – Published on GOV.UK (2023).

Top Noted Publication:

GIS-Based Method for Assessing the Viability of Solar-Powered Irrigation

  • Journal: Applied Energy
  • Publication Date: January 2025
  • DOI: 10.1016/j.apenergy.2024.124461
  • Contributors: Daniel Mutia Mwendwa, Alycia Leonard, Stephanie Hirmer
  • Summary: This paper presents a Geographic Information System (GIS)-based methodology for evaluating the feasibility of solar-powered irrigation systems. The method integrates spatial data with factors such as water availability, crop water demand, and solar energy potential to determine where solar-powered irrigation systems can be most effectively deployed in Sub-Saharan Africa.

Spatial Data Starter Kit for OnSSET Energy Planning in Kitui County, Kenya

  • Journal: Data in Brief
  • Publication Date: December 2022
  • DOI: 10.1016/j.dib.2022.108691
  • Contributors: Daniel Mutia Mwendwa, Jeffrey Tchouambe, Emily Hu, Micaela Flores Lanza, Andrea Babic Brener, Gyubin Hwang, Layla Khanfar, Alycia Leonard, Stephanie Hirmer, Malcolm McCulloch
  • Summary: This article provides a comprehensive spatial data kit designed for energy planning in Kitui County, Kenya. It is part of the Open-Source Spatial Electrification Tool (OnSSET) framework, which assists planners in developing least-cost electrification pathways. The dataset includes geographic and energy-related data to facilitate more efficient and accurate energy planning.

Elia Colleoni | Chemical Engineering | Best Researcher Award

Mr. Elia Colleoni, Chemical Engineering, Best Researcher Award

  Elia Colleoni at King Abdullah University of Science and Technology, Saudi Arabia

Summary:

Elia Colleoni is a dedicated researcher in the field of chemical engineering, specializing in the characterization and processing of heavy oils. Currently pursuing a Ph.D. at the King Abdullah University of Science and Technology (KAUST), his research interests encompass the gasification, ultrasonically assisted oxidative desulfurization, and pyrolysis of heavy oils.

Elia holds a Master of Science degree in Chemical Engineering from Politecnico di Milano, where he achieved a mark of 110/110. His master’s thesis focused on developing a kinetics mechanism for simulating the pyrolysis of heavy fuel oils. With a bachelor’s degree in Chemical Engineering from the same institution, Elia delved into the analysis of processes for valorizing and upgrading biogas for his thesis.

Professional Profile:

 

👩‍🎓Education & Qualification:

Ph.D., King Abdullah University of Science and Technology (KAUST)

Master of Science in Chemical Engineering, Politecnico di Milano

Bachelor of Science in Chemical Engineering, Politecnico di Milano

Diploma (Technical/Vocational), Istituto di Istruzione Superiore Giulio Natta (Bergamo, Italia)

🛠️ Work Experience:

Internship at Clean Combustion Research Center (CCRC), KAUST – Focused on oxidative desulfurization (ODS) of heavy fuel oils and simplified kinetics scheme development for heavy fuel oils pyrolysis. (June 2020 – May 2021)

Research Area:

Mr. Elia Colleoni’s research area focuses on several aspects of chemical engineering and energy, with specific interests in the following areas:

Heavy Oils Characterization: Investigating the properties and characteristics of heavy oils, particularly in the context of their gasification and ultrasonically assisted oxidative desulfurization.

Pyrolysis of Heavy Fuel Oils: Developing and studying kinetics mechanisms related to the liquid-phase pyrolysis of heavy fuel oils, aiming to understand the underlying processes and behaviors.

Cavitation Reactors and Oil Processing: Numerical modeling and application of ultrasonically induced cavitation reactors, especially in the context of processing heavy oils.

SARA Fractions Pyrolysis: Exploring the chemical kinetics of pyrolysis, with a focus on specific fractions such as resins within the SARA (Saturates, Aromatics, Resins, and Asphaltenes) classification.

Sonoprocessing of Oil: Studying the effects of sonoprocessing on oil, particularly the declustering of asphaltenes behind fine ultrasonic emulsions.

Publication Top Noted:

Chemical kinetics of asphaltene pyrolysis

  • Authors: P Guida, E Colombo, E Colleoni, S Saxena, A Frassoldati, WL Roberts, …
  • Published in: Energy & Fuels 35 (10), 8672-8684
  • Year: 2021

Unraveling the complexity of pyrolysates from residual fuels by Py-GCxGC-FID/SCD/TOF-MS with an innovative data processing method

  • Authors: E Colleoni, VG Samaras, P Guida, A Frassoldati, T Faravelli, WL Roberts
  • Published in: Journal of Analytical and Applied Pyrolysis 175, 106204
  • Year: 2023

Numerical model of an ultrasonically induced cavitation reactor and application to heavy oil processing

  • Authors: P Guida, G Viciconte, A Ceschin, E Colleoni, FEH Pérez, S Saxena, …
  • Published in: Chemical Engineering Journal Advances 12, 100362
  • Year: 2022

Kinetics mechanism of heavy fuel oils liquid-phase pyrolysis

  • Author: E Colleoni
  • Published in: Italy
  • Year: 2021

Chemical kinetics of SARA fractions pyrolysis: Resins

  • Authors: E Colleoni, P Guida, VG Samaras, A Frassoldati, T Faravelli, WL Roberts
  • Published in: Journal of Analytical and Applied Pyrolysis 177, 106281
  • Year: 2024

Sonoprocessing of oil: Asphaltene declustering behind fine ultrasonic emulsions

  • Authors: E Colleoni, G Viciconte, C Canciani, S Saxena, P Guida, WL Roberts
  • Published in: Ultrasonics Sonochemistry, 106476
  • Year: 2023

A NUMERICAL MODEL OF TRANSIENT ULTRASONICALLY INDUCED CAVITATION ACCOUNTING FOR HOMOGENEOUS NUCLEATION

  • Authors: C Canciani, A Ceschin, P Guida, E Colleoni, HG Im, WL Roberts
  • Published in: International Heat Transfer Conference Digital Library
  • Year: 2023