Ali Palizdar | Natural gas liquefaction | Best Researcher Award

Dr. Ali Palizdar | Natural gas liquefaction | Best Researcher Award

Dr. Ali Palizdar, Institute of Liquefied Natural Gas (ILNG), University of Tehran, Tehran, Islamic Republic of Iran

Dr. Ali Palizdar is a researcher at the Institute of Liquefied Natural Gas (ILNG), University of Tehran, Iran. He holds a Master’s (2012) and Ph.D. (2019) in Chemical Engineering and completed a postdoctoral research fellowship at the University of Tehran. With over 10 years of experience in natural gas liquefaction, his research focuses on LNG processing, helium separation, and gas conversion. Dr. Palizdar has authored 17 publications and supervised 15 graduate theses. He has contributed significantly to Iran’s LNG industry through various research and consultancy projects. 🌍💡📚

Publication Profile

Google Scholar

Academic and Professional Background

Dr. Ali Palizdar holds a Master’s (2012) and Ph.D. (2019) in Chemical Engineering from the University of Tehran and Tarbiat Modares University, respectively. Following his postdoctoral research at the University of Tehran, his work has focused on natural gas liquefaction, helium separation, and conversion. With over 10 years of experience at the Institute of Natural Gas Liquefaction, Dr. Palizdar has developed a deep expertise in LNG technologies, both in Iran and globally. He has supervised 15 graduate theses and authored 17 research publications in prestigious journals and conferences. 📚💡

Research and Innovations

Dr. Ali Palizdar has led numerous groundbreaking research projects in the field of natural gas liquefaction (LNG) and energy optimization. His work includes categorizing LNG standards in Iran, developing small-scale LNG units, and conducting environmental studies on LNG as fuel for maritime and road transportation. He has overseen the design of a 15-tonne/day LNG liquefaction plant and developed a master plan for an LNG research institute. Dr. Palizdar has also contributed to optimizing sport venues, exergy analysis for fuel cells, and investigating mixed refrigerant processes for LNG liquefaction. 🌍💡🔋

Areas of Research 🌍🔬

Dr. Ali Palizdar’s research primarily focuses on natural gas liquefaction and cryogenics, crucial for advancing energy solutions. His work in alternative fuels explores sustainable energy sources, particularly in the transportation sector, by examining the use of liquefied natural gas (LNG) as an eco-friendly fuel for both maritime and road transport. With deep expertise in cryogenic processes, he aims to improve LNG production, storage, and transportation efficiency. Through these innovative areas, Dr. Palizdar contributes significantly to energy sustainability and environmental impact reduction. 🌱💡🚗

Publication Top Notes

  • Advanced exergetic analysis of five natural gas liquefaction processes – A Vatani, M Mehrpooya, A Palizdar, Energy Conversion and Management 78, 720-737 (Cited by: 225) 📊 (2014)
  • Energy and exergy analyses of five conventional liquefied natural gas processes – A Vatani, M Mehrpooya, A Palizdar, International Journal of Energy Research 38 (14), 1843-1863 (Cited by: 145) 🔋 (2014)
  • Energy and exergy analysis and optimal design of the hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process – J Yazdanfar, M Mehrpooya, H Yousefi, A Palizdar, Energy Conversion and Management 98, 15-27 (Cited by: 87) ⚡ (2015)
  • Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions – A Palizdar, SM Sadrameli, Renewable Energy 148, 674-688 (Cited by: 62) 🌱 (2020)
  • Catalytic upgrading of beech wood pyrolysis oil over iron-and zinc-promoted hierarchical MFI zeolites – A Palizdar, SM Sadrameli, Fuel 264, 116813 (Cited by: 61) 🌳 (2020)
  • Thermodynamic evaluation of three mini-scale nitrogen single expansion processes for liquefaction of natural gas using advanced exergy analysis – A Palizdar, T Ramezani, Z Nargessi, S AmirAfshar, M Abbasi, A Vatani, Energy Conversion and Management 150, 637-650 (Cited by: 42) 🔥 (2017)
  • Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas – A Palizdar, T Ramezani, Z Nargessi, S AmirAfshar, M Abbasi, A Vatani, Energy 168, 542-557 (Cited by: 34) 💡 (2019)
  • Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant – A Palizdar, SM Sadrameli, Energy Conversion and Management 138, 474-485 (Cited by: 25) 🔧 (2017)
  • Simulation and optimization of sweetening and dehydration processes in the pretreatment unit of a mini-scale natural gas liquefaction plant – F Zarezadeh, A Vatani, A Palizdar, Z Nargessi, International Journal of Greenhouse Gas Control 118, 103669 (Cited by: 12) 🌍 (2022)
  • Design and analysis of a novel self-refrigerated natural gas liquefaction system integrated with helium recovery and CO2 liquefaction processes

 

Liguo Shen | Chemical engineering | Best Researcher Award

Prof. Dr. Liguo Shen | Chemical engineering | Best Researcher Award

Professor, Zhejiang Normal University, China

Prof. Dr. Liguo Shen, a distinguished researcher at Zhejiang Normal University, has made remarkable contributions to environmental science and engineering, particularly in membrane separation processes for water pollution control. Holding a PhD from the Chinese Academy of Sciences and additional training at the Max Planck Society, Dr. Shen has earned accolades such as the IAAM Scientists Award and recognition as a VEBLEO Fellow.

Publication Profile

Google Scholar

Academic and Professional Background 🌟📚

Prof. Dr. Liguo Shen earned his PhD from the Chinese Academy of Sciences, with additional training at the Max Planck Society. He is a recipient of prestigious honors, including the IAAM Scientist Award, World’s Top 2% Scientist recognition, and Fellowships from IAAM and VEBLEO. 🌍🔬 Over decades, his research has focused on developing innovative membrane separation processes for water pollution control. 💧♻️ He has published over 190 SCI papers in top-tier journals like Chemical Society Reviews, Nano Energy, and Science Bulletin, with 27 highly cited papers and 12 hotspot papers. His work, cited over 9,000 times, boasts an impressive h-index of 58. 📈✨

Research and Innovations

Prof. Dr. Liguo Shen’s groundbreaking research combines theoretical and technical innovations in membrane technology. 🧠📊 He developed a mathematical model for membrane surface morphology and clarified contamination mechanisms through thermodynamics, integrating XDLVO theory, CFD methods, and neural network technology. 🔍📈 On the technical front, he pioneered the in situ micro-aerated membrane separation system, achieving efficient suppression of membrane pollution. 💡🔧 Additionally, he designed advanced two-dimensional materials for membrane construction, enabling the effective treatment of diverse types of sewage. 🌿💧 These innovations represent significant progress in water purification and environmental sustainability. 🌍♻️

Areas of Research

Prof. Dr. Liguo Shen’s research spans across multiple fields, including Environmental Science, Materials Science, Chemical Engineering, and Chemistry. His work focuses on developing innovative membrane separation techniques, specifically for water purification. 🌊💧 By advancing materials science, he has designed cutting-edge materials to improve the efficiency of membrane processes in water treatment. His expertise in chemical engineering and chemistry further drives the creation of sustainable solutions for environmental pollution control, particularly in addressing water contamination and promoting cleaner water resources. 🌱🔬

Publication Top Notes

  • Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes – Desalination, 265 citations, 2012 📄
  • Membrane fouling in a submerged membrane bioreactor: Impacts of floc size – Chemical Engineering Journal, 243 citations, 2015 💧
  • Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights – Water Research, 237 citations, 2020 🧪
  • Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: Mussel-inspired layer-by-layer self-assembly – Journal of Colloid and Interface Science, 205 citations, 2020 🧫
  • Facile synthesis of 2D TiO2@ MXene composite membrane with enhanced separation and antifouling performance – Journal of Membrane Science, 196 citations, 2021 🔬
  • Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations – Water Research, 186 citations, 2018 🧬
  • Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation – Journal of Membrane Science, 182 citations, 2021 💧🖋️
  • Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@ MXene nanoparticles to upper layer in phase inversion process – Journal of Membrane Science, 170 citations, 2021 🧲
  • Effect of calcium ions on fouling properties of alginate solution and its mechanisms – Journal of Membrane Science, 154 citations, 2017 🧪
  • How to increase maize production without extra nitrogen input – Resources, Conservation and Recycling, 138 citations, 2020 🌾