Assoc Prof. Dr. Fyodor Malchik | Chemistry | Editorial Board Member
Al-Farabi Kazakh National University | Kazakhstan
Malchik Fyodor is an accomplished electrochemist and materials scientist affiliated with al-Farabi Kazakh National University, with a verified scholarly profile reflecting strong global impact in the fields of electrochemistry, battery technology, and advanced cathode materials. He has accumulated over 850 citations with an h-index of 14 and an i10-index of 19, demonstrating both productivity and sustained influence since 2020. His research centers on next-generation aqueous and hybrid energy storage systems, with particular emphasis on MXene-based electrodes, water-in-salt electrolytes, sodium- and lithium-ion batteries, supercapacitors, and electrochemical reaction mechanisms. His most highly cited works include landmark studies on electrochemical anomalies in titanium carbide MXenes, anion insertion behavior in MXenes, and MXene conductive binders for high-performance sodium-ion anodes, all of which have significantly advanced understanding of ion transport and interfacial phenomena in aqueous electrolytes. He has also made notable contributions to high-voltage aqueous lithium-ion batteries, hybrid energy storage devices, and polyimide-based post-lithium storage systems. Beyond MXenes, his portfolio spans zinc, manganese, and multivalent ion batteries, hydrogen evolution electrocatalysis, flexible microbatteries, and metal hydride electrodes. Malchik’s work integrates in-situ electrochemical characterization, EQCM-D analysis, and materials engineering to bridge fundamental mechanisms with practical device performance. He is an active contributor to high-impact journals such as ACS Nano, Journal of the American Chemical Society, Nano Energy, ACS Energy Letters, and Energy Storage Materials. In recent years, his research has expanded toward sustainability-driven technologies including hydrogen storage, aqueous electrolyte optimization, supercapacitor membranes, and recycling-related electrochemical processes. Through extensive international collaborations and steady publication output across more than a decade, Malchik Fyodor has established himself as a key contributor to modern electrochemical energy storage and conversion science, with growing relevance to both academic research and industrial energy technologies.
Profiles: Google Scholar
Featured Publications
Wang, X., Mathis, T. S., Sun, Y., Tsai, W. Y., Shpigel, N., Shao, H., Zhang, D., Malchik, F., Gogotsi, Y., & Aurbach, D. (2021). Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano, 15(9), 15274–15284.
Shpigel, N., Chakraborty, A., Malchik, F., Bergman, G., Nimkar, A., Gavriel, B., Levi, M. D., & Aurbach, D. (2021). Can anions be inserted into MXene? Journal of the American Chemical Society, 143(32), 12552–12559.
Malchik, F., Shpigel, N., Levi, M. D., Penki, T. R., Gavriel, B., Bergman, G., & Aurbach, D. (2021). MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte. Nano Energy, 79, 105433.
Malchik, F., Shpigel, N., Levi, M. D., Mathis, T. S., Mor, A., Gogotsi, Y., & Aurbach, D. (2019). Superfast high-energy storage hybrid device composed of MXene and Chevrel-phase electrodes operated in saturated LiCl electrolyte solution. Journal of Materials Chemistry A, 7(34), 19761–19773.
Nimkar, A., Bergman, G., Ballas, E., Tubul, N., Levi, N., Malchik, F., Kukurayeva, I., & Aurbach, D. (2023). Polyimide compounds for post-lithium energy storage applications. Angewandte Chemie, 135(50), e202306904.
Driving the frontier of aqueous and hybrid energy storage, the nominee’s research on MXenes, advanced electrolytes, and next-generation battery materials has reshaped fundamental understanding of ion transport while enabling safer, high-performance energy devices. This work directly supports global transitions toward sustainable electrification, scalable energy storage, and hydrogen technologies with strong industrial and societal impact.