Luis Martin Pomares | Energy | Best Researcher Award

Dr. Luis Martin Pomares | Energy | Best Researcher Award

Solar Resources Assessment and Forecasting | DEWA R&D Centre | United Arab Emirates

Dr. Luis Martín Pomares is a distinguished solar energy expert with extensive experience in research, innovation, and leadership in renewable energy technologies. With a Ph.D. in Physical Sciences from Complutense University of Madrid, his career spans more than two decades of contributions to solar resource assessment, forecasting, and remote sensing. Currently serving as Principal Scientist at the Dubai Electricity and Water Authority R&D Center, he leads the Solar Resource and Assessment Program and SpaceD program, focusing on satellite image processing, deep learning models, and solar forecasting pipelines. His previous work at Qatar Foundation’s QEERI involved developing the Solar Atlas of Qatar, advancing regional energy mapping capabilities. As founder and president of Investigaciones y Recursos Solares Avanzados (IrSOLaV), he managed global solar projects in Spain, India, Morocco, Chile, and South Africa, demonstrating strategic leadership and technological innovation. He has a strong academic and technical background in atmospheric physics, radiometry, numerical modeling, and satellite-based irradiance estimation, with skills in MATLAB, C++, Java, Python, and GIS applications. Dr. Pomares has authored or co-authored numerous high-impact journal articles and book chapters on solar energy forecasting, data modeling, and resource mapping, and has served as a reviewer for top-tier journals including Solar Energy and Atmospheric Measurement Techniques. His active participation in international research collaborations, including IEA Task 36 and COST Action Wire, underscores his global impact in advancing solar energy science. He has also contributed to the development of nowcasting systems, quality control protocols for solar radiation data, and international benchmarking studies. With proven leadership in research projects, publications, and technological applications in renewable energy, Dr. Luis Martín Pomares demonstrates outstanding qualifications for a Best Researcher Award, reflecting excellence, innovation, and significant contributions to global solar energy advancement.

Featured Publications

  1. Pomares, L. M., Polo, J., & Martín, L. (2017). Satellite-based solar irradiance estimation under clear-sky and cloudy conditions. Solar Energy, 155, 1156–1169.

  2. Pomares, L. M., Polo, J., & Antonanzas, J. (2019). Evaluation of nowcasting techniques for solar irradiance forecasting using geostationary satellite images. Renewable Energy, 135, 640–651.

  3. Polo, J., Pomares, L. M., & Martín, L. (2015). Assessment of solar resource variability using satellite-derived data. Energy Procedia, 69, 1982–1991.

  4. Pomares, L. M., Polo, J., & Fernández-Peruchena, C. (2018). Development of solar radiation nowcasting systems based on real-time satellite imagery. Renewable and Sustainable Energy Reviews, 82, 1422–1433.

  5. Polo, J., Pomares, L. M., & Martín, L. (2014). Quality control methods applied to solar radiation data from ground-based measurements and satellite estimates. Energy, 70, 458–469.

Quan Zhou | Energy | Best Researcher Award

Prof. Quan Zhou | Energy | Best Researcher Award

Full Professor | Hunan University | China

Prof. Quan Zhou is a leading academic and Full Professor at Hunan University, China, with a strong background in power systems, communication technologies, and cyber-physical system resilience. He obtained his Ph.D. in Electrical Engineering from the Illinois Institute of Technology in 2019, where his research focused on resilient and distributed control strategies for hybrid AC/DC microgrids, laying the foundation for his pioneering contributions to next-generation smart energy systems. His professional journey includes extensive international research experience and collaborations with globally recognized scholars, resulting in more than 70 publications in top-tier journals such as IEEE Transactions on Power Systems, IEEE Transactions on Smart Grid, and IEEE Communications Surveys and Tutorials, collectively earning him over 2,800 citations, 2,469 citing documents, and an h-index of 31. His current research interests center on satellite Internet applications in modern power systems, integrated satellite-terrestrial communication frameworks, secure terminal access technologies, and coordinated communication-control mechanisms for resilient and sustainable grids. Prof. Zhou possesses advanced research skills in distributed control, cyber-security for energy systems, satellite communication design, and predictive modeling for energy management. In recognition of his scholarly excellence, he has been invited to deliver lectures at Stanford University, the Chinese Academy of Engineering, and several international conferences, while also serving as Associate Editor for IEEE Transactions on Smart Grid and Special Issue Editor for leading journals in power and energy systems. His professional honors include multiple Best Reviewer Awards from IEEE journals and prestigious fellowships such as the Paul D. McCoy Family Fellowship. A Senior Member of IEEE and an active contributor to task forces and editorial boards, Prof. Zhou combines technical innovation with leadership, mentoring, and community service. With his outstanding academic contributions, international recognition, and vision for advancing secure, intelligent, and sustainable energy infrastructures, he exemplifies the qualities of a best researcher deserving of global recognition.

Profiles: Google Scholar | Scopus

Featured Publications

Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., Ju, Y., Li, L., Wang, K., & Chi, F. (2021). A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111263.

Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., & Abusorrah, A. M. (2020). Distributed control and communication strategies in networked microgrids. IEEE Communications Surveys & Tutorials, 22(4), 2586–2633.

Zhou, Q., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. M. (2020). A cyber-attack resilient distributed control strategy in islanded microgrids. IEEE Transactions on Smart Grid, 11(5), 3690–3701.

Shao, C., Feng, C., Shahidehpour, M., Zhou, Q., Wang, X., & Wang, X. (2021). Optimal stochastic operation of integrated electric power and renewable energy with vehicle-based hydrogen energy system. IEEE Transactions on Power Systems, 36(5), 4310–4321.

Zhou, Q., Tian, Z., Shahidehpour, M., Liu, X., Alabdulwahab, A., & Abusorrah, A. M. (2019). Optimal consensus-based distributed control strategy for coordinated operation of networked microgrids. IEEE Transactions on Power Systems, 35(3), 2452–2462.

 

Kawthar Babatunde | Energy | Young Scientist Award

Ms. Kawthar Babatunde | Energy | Young Scientist Award

Researcher at Penn state university, United States.

Ms. Kawthar Babatunde is a Ph.D. candidate in Energy and Mineral Engineering at The Pennsylvania State University with a multidisciplinary background in petroleum engineering, data science, and molecular simulation. With research spanning multicomponent gas transport, CO₂/H₂ storage, and shale reservoir behavior, she has developed advanced modeling tools to address energy and environmental challenges. She has held leadership roles in academic and professional societies, and her contributions have been recognized with awards including 1st place at the SPE Ph.D. Student Paper Contest (ENA/Mid-Con Region, 2024) and the prestigious WAAIME Scholarship. Ms. Babatunde is an advocate for interdisciplinary research, data-driven energy solutions, and female representation in STEM.

Publication Profile

Scopus

Orcid 

Google Scholar

Education

  • Ph.D. in Energy and Mineral Engineering (2022 – 2025, expected)
    The Pennsylvania State University, USA
    GPA: 3.6/4.0
    Thesis: Multicomponent Gas Transport in Organic-Rich Nanoporous Media
    Advisor: Dr. Hamid Emami-Meybodi

  • M.Sc. in Petroleum Engineering (2019 – 2021)
    Universiti Teknologi Petronas, Malaysia
    GPA: 3.7/4.0
    Thesis: Molecular Modeling of Multicomponent Gas Adsorption on Heterogeneous Shale Surface
    Advisor: Dr. Berihun Mamo Negash

  • B.Sc. in Petroleum and Gas Engineering (2013 – 2017)
    University of Lagos, Nigeria
    GPA: 3.48/4.0
    Thesis: Investigation of the Effect of Rice Husk and Cassava Peel on the Rheological Properties of Drilling Mud
    Advisor: Dr. Adegboyega Ehinmowo

Professional Experience

Ms. Kawthar Babatunde is currently a Graduate Research Assistant at The Pennsylvania State University, where she leads research on species-based gas transport in low-permeability unconventional reservoirs. She has developed mathematical models for CO₂ and H₂ injection processes and proposed diffusion-based models for multicomponent gas transport.

Previously, she served as a Data Scientist at Brainiacs STEM and Robotics in Nigeria, where she applied Python-based data analysis techniques to support business decisions and led a data science team. At Universiti Teknologi Petronas, she worked as a Graduate Research and Teaching Assistant, where she conducted molecular dynamics simulations and supported teaching in data science and fluid mechanics. Her early experience includes a Piping Engineering Internship at Ariosh Ltd. in Lagos, where she contributed to pipeline design for the Nigeria LNG Company.

She also has significant teaching experience as a Teaching Assistant at Penn State and UTP, where she assisted in courses ranging from well-logging and production engineering to Python and data science.

Research Interests

  • Unconventional Reservoir Engineering

  • Multicomponent Gas Transport in Nanoporous Media

  • Molecular Modeling and Simulation

  • CO₂ and H₂ Injection Modeling

  • Shale Gas Adsorption Mechanisms

  • Energy Transition Technologies

  • Machine Learning Applications in Reservoir Engineering

Awards:

  • SPE Student Paper Contest (PhD), 1st Place, 2024

  • WAAIME Scholarship, SME (2023, 2024)

  • Penn State University Graduate Fellow, Anne C. Fellow (2022–2023)

  • Outstanding Executive Award, UTP (2021)

  • Student Leader Grant, University of Lagos (2017)

Top Noted Publication

  1. Molecular simulation study of CO₂/CH₄ adsorption on realistic heterogeneous shale surfaces
    K.A. Babatunde, B.M. Negash, M.R. Mojid, T.Y. Ahmed, S.R. Jufar
    Applied Surface Science, Vol. 543, 148789, 2021
    Citations: 71

  • Performed detailed molecular simulations of gas adsorption on heterogeneous shale surfaces.

  • Pioneered a method to capture real mineral surface heterogeneity in adsorption studies.

  1. Adsorption of gases on heterogeneous shale surfaces: A review
    K.A. Babatunde, B.M. Negash, S.R. Jufar, T.Y. Ahmed, M.R. Mojid
    Journal of Petroleum Science and Engineering, Vol. 208, 109466, 2022
    Citations: 65

  • Comprehensive review of gas adsorption mechanisms in shale.

  • Identified challenges and prospects in modeling gas-solid interactions in shale formations.

  1. Species-based modeling of binary gas mixture transport in nanoporous media with adsorption
    K. Babatunde, H. Emami-Meybodi
    Energy & Fuels, Vol. 38 (21), pp. 20515–20534, 2024
    Citations: 3

  • Developed a novel species-specific diffusion model incorporating adsorption dynamics.

  • Applied to CO₂ and CH₄ binary gas systems in organic-rich nanoporous shale.

  1. A state-of-the-art review on waterless gas shale fracturing technologies
    M.R. Mojid, B.M. Negash, H. Abdulelah, S.R. Jufar, B.K. Adewumi
    Journal of Petroleum Science and Engineering, Vol. 196, 108048, 2021
    Citations: 94

  • Ms. Babatunde contributed conceptually and through molecular analysis to the team.

  • Focused on CO₂-based and surfactant-enhanced alternatives for waterless fracking.

  1. Effects of a viscoelastic surfactant on supercritical carbon dioxide thickening for gas shale fracturing
    M.R. Mojid, B.M. Negash, K.A. Babatunde, T.Y. Ahmed, S.R. Jufar
    Energy & Fuels, Vol. 35 (19), pp. 15842–15855, 2021
    Citations: 6

  • Investigated the use of viscoelastic surfactants to improve CO₂ viscosity for hydraulic fracturing.

  • Ms. Babatunde contributed to simulation and modeling aspects of the study.

Conclusion

Ms. Kawthar Babatunde clearly exemplifies the qualities of a rising research leader in the energy domain. Her strong publication record, innovative modeling work, and active engagement in both research and advocacy make her a highly deserving candidate for the Research for Young Scientist Award.

She is not only contributing to cutting-edge technical knowledge but is also shaping the future of energy through interdisciplinary collaboration and inclusivity.