Il-Cho Park | Engineering | Best Researcher Award

Prof. Il-Cho Park | Engineering | Best Researcher Award 

Professor | Mokpo National Maritime University | South Korea

Prof. Il-Cho Park is a highly capable and impactful engineering professional whose academic depth and extensive industry background position him as a strong candidate for the Best Researcher Award. With over five years of professional experience in the shipping industry and a focused academic trajectory in surface treatment engineering for marine materials, he has cultivated a rare blend of practical expertise and research-driven innovation. His career demonstrates steady progression from first-class engineer at Hanjin Shipping Co., Ltd. to senior academic leadership as Professor at Mokpo National Maritime University, where he has served since 2020 while simultaneously holding the role of Chief Engineer. This dual track reflects his commitment to bridging industrial practice with scientific advancement, particularly in areas such as ship engineering, corrosion protection, surface treatment technologies, and marine pollution management. His academic credentials, including a master’s degree and a doctorate from Mokpo National Maritime University between 2013 and 2018, provide a strong foundation for advanced research in marine materials and engineering processes. Prof. Park’s expertise contributes significantly to improving maritime safety, enhancing material durability, and advancing eco-friendly engineering solutions within the marine sector. His career reflects sustained dedication to developing engineering methods that address real-world operational challenges, aligning with global priorities for sustainable and resilient maritime systems. Through active involvement in academia and maritime operations, he consistently demonstrates the ability to apply theoretical knowledge to practical technological improvements and industry standards. His contributions support the training of future marine engineers, promote innovation in surface treatment science, and address pressing environmental concerns linked to marine pollution. Overall, his professional record, specialized skill set, and commitment to continuous improvement highlight his suitability for the Best Researcher Award, underscoring his role as an influential figure advancing engineering excellence in the maritime field.

Profiles: ORCID | ResearchGate

Featured Publications

Park, I. C., & Kim, S. J. (2022). Cavitation erosion characteristics of hard chromium plated diesel engine cylinder liner. Transactions of the IMF.

Park, I. C., & Han, M. S. (2021). Solid particle erosion behavior of Inconel 625 thermal spray coating layers. Journal of the Korean Society of Marine Environment and Safety.

Park, I. C., & Han, M. S. (2021). Analysis of electrochemical corrosion resistance of Inconel 625 thermal spray coated fin tube of economizer. Journal of the Korean Society of Marine Environment and Safety.

Yang, Y. J., Lee, J. H., Park, I. C., & Kim, S. J. (2020). Investigation on electrochemical cathodic protection for cavitation-erosion reduction of anodized aluminum alloy. Journal of Nanoscience and Nanotechnology.

Park, I. C., & Kim, S. J. (2020). Determination of corrosion protection current density requirement of zinc sacrificial anode for corrosion protection of AA5083-H321 in seawater. Applied Surface Science.

Prof. Il-Cho Park’s research advances the durability, safety, and sustainability of marine engineering systems through innovative surface treatment and corrosion-protection technologies. His work supports safer maritime operations, strengthens engineering materials for long-term industrial use, and contributes globally to cleaner, more resilient marine environments.

Vijayan Gopalsamy | Engineering | Best Researcher Award

Prof. Dr. Vijayan Gopalsamy | Engineering | Best Researcher Award

Professor | Meenakshi Sundararajan Engineering College | India

Dr. G. Vijayan, Professor of Mechanical Engineering at Meenakshi Sundararajan Engineering College, Chennai, is an accomplished researcher and educator with over 26 years of academic and industrial experience, including international teaching exposure in the Sultanate of Oman. Holding a Ph.D. in Renewable Energy Engineering from Anna University with a focus on solar thermal and nanofluid technologies, he has made notable contributions to the advancement of sustainable and solar energy systems. His research portfolio encompasses 14 high-impact publications indexed in SCI(E), Scopus, and Google Scholar, along with book chapters, numerous conference papers, and more than 85 journal article reviews. A recognized editor, reviewer, and editorial board member for multiple prestigious journals such as Renewable Energy, Journal of Thermal Analysis and Calorimetry, and Thermal Science, Dr. Vijayan’s expertise in solar energy optimization and nanofluid applications has earned him multiple honors, including the Research Excellence Award (InSc) and the Young Researcher Award (GARNet). His commitment to professional development is reflected through his coordination and participation in AICTE and Anna University-sponsored Faculty Development Programs and contributions to several book publications on renewable energy and engineering education. As a research supervisor at Anna University, he actively guides and motivates students in pursuing innovative projects that align with national energy goals. His multidisciplinary skills, encompassing renewable energy systems, heat transfer, and nanotechnology, along with his extensive academic leadership and mentoring experience, strongly position him as a deserving candidate for the Best Researcher Award, exemplifying excellence in research, teaching, and societal impact through sustainable technological innovations.

Featured Publications
  1. Vijayan, G., & Subramani, J. (2021). Experimental investigation on heat transfer and friction factor characteristics of solar air heater using CuO/water nanofluid. Renewable Energy, 170, 1048–1061.

  2. Vijayan, G., Arunkumar, T., & Kabeel, A. E. (2020). Performance analysis of solar still integrated with hybrid nanofluid-based solar collector. Journal of Thermal Analysis and Calorimetry, 142(5), 2027–2039.

  3. Vijayan, G., & Senthilkumar, P. (2019). Energy and exergy analysis of solar thermal systems using nanofluids: A review. Journal of Cleaner Production, 233, 1332–1348.

  4. Vijayan, G., & Suresh, S. (2018). Experimental studies on thermal conductivity enhancement of Al2O3-water nanofluids for solar thermal applications. Applied Thermal Engineering, 137, 659–669.

  5. Vijayan, G., & Rajasekar, K. (2017). Heat transfer enhancement in flat plate solar collector using nanofluids—A comprehensive review. International Journal of Heat and Mass Transfer, 115, 880–895.

 

Dr. G. Vijayan’s pioneering research in renewable energy, solar thermal systems, and nanofluid technology advances sustainable energy solutions that enhance efficiency and environmental resilience. His work bridges scientific innovation and industrial application, driving global progress toward cleaner energy systems and sustainable engineering development.

Jianbin Chen | Engineering | Best Researcher Award

Mr. Jianbin Chen | Engineering | Best Researcher Award

Chief Technology Officer | Guangdong Titans Intelligent Power Company Ltd | China

Mr. Jianbin Chen is a distinguished engineering professional with more than 11 years of expertise in digital signal design, iterative coding, data storage and communication systems, and the integration of power and wireless communication technologies in the Internet of Things (IoT). He currently serves as the Executive Vice President and R&D Director at Guangdong Titan Intelligent Power Co., Ltd., in addition to holding roles as a Senior Engineer, IEEE member, off-campus master’s mentor at Nanchang Institute of Technology, and Visiting Associate Professor at Guangdong Polytechnic of Science and Technology. Mr. Chen earned his bachelor’s degree from North Central University in 2011 and completed his Ph.D. at the University of Macau in 2021. Throughout his career, he has led and executed numerous high-impact projects, including intelligent air conditioning energy control systems, IoT-based smart street lighting systems, and advanced energy consumption control platforms for major infrastructure. He has overseen several provincial and municipal innovation programs, demonstrating strong leadership in research and technology development. Mr. Chen has secured 30 patents and 28 software copyrights, with many of his innovations being successfully commercialized and widely recognized. His outstanding contributions have earned him multiple prestigious honors such as the Zhuhai Talent Program, the Best Software Technology Innovation Product Awards, and national innovation competition prizes. Academically, he has published influential research papers and a book, with his work featured in SCI-indexed journals, covering topics like power electronics, intelligent control systems, and smart cities. His ability to combine advanced research with industrial applications has significantly contributed to the development of smart energy and IoT technologies in China. Mr. Chen’s visionary leadership, technical excellence, and dedication to innovation position him as a key figure in advancing intelligent infrastructure and sustainable technology solutions for the future.

Profile: ORCID
Featured Publications
  1. Chen, J., Yang, C., Zou, J., & Chen, K. (2025). Multiplier operated controller for CCM boost PFC converter with regulated input impedance and improved power factor. IEEE Access. DOI: 10.1109/ACCESS.2025.3548096

  2. Chen, J., Yang, C., & Zou, J. (2025). Optimization control strategy of wide ZVS range and automatic Euler angle for bi-directional wireless power transfer system by TPS. International Journal of Electrical Power & Energy Systems. DOI: 10.1016/j.ijepes.2025.111133

  3. Chen, J., Yang, C., & Zou, J. (2022). Robust enhanced voltage range control for industrial robot chargers. IEEE Access. DOI: 10.1109/ACCESS.2022.3229688

  4. Chen, J., Yang, C., Tang, S., & Zou, J. (2021). A high power interleaved parallel topology full-bridge LLC converter for off-board charger. IEEE Access. DOI: 10.1109/ACCESS.2021.3130051

  5. Chen, J. (2017). SMT物料种类与标准. 电子工业出版社. ISBN: 978-7-121-31740-8

Julio Pino | Engineering | Lifetime Achievement Award

Prof. Dr. Julio Pino | Engineering | Lifetime Achievement Award 

Professor | Universidad Estatal del Sur de Manabí | Ecuador

Dr. Julio Cesar Pino Tarragó is a distinguished mechanical engineer and Senior Professor I with a Ph.D. in Mechanical Engineering from the Polytechnic University of Madrid, Spain (2008), and a degree in Mechanical Engineering from Universidad de Holguín “Oscar Lucero Moya” (1993). With extensive experience in both undergraduate and postgraduate teaching, he has delivered courses in strength of materials, theoretical mechanics, mechanical design, physics, statistics, operation and maintenance of agricultural machinery, design of experiments, ergonomics, and reliability of mechanical systems, among others. He has supervised numerous master’s and doctoral theses focused on tribology, agricultural machinery performance, biodigesters, and advanced manufacturing techniques, while also leading significant research projects internationally, including in Cuba, Spain, and Ecuador. His research interests encompass mechanical design, tribology, agricultural machinery, renewable energy, process optimization, and educational technologies using artificial intelligence. Dr. Pino Tarragó has an extensive publication record, including Scopus-indexed Q1-Q3 journals, peer-reviewed books on structural steel design, experimental methods, and engineering education, and articles in Latindex and SciELO journals, reflecting his scholarly impact with 207 citations, H-index 6, and i10-index 5. He has contributed to community-oriented projects, such as sustainable energy solutions for rural areas and constructivist teaching methodologies supported by AI, and has actively engaged in mentorship, leadership, and educational innovation. His awards and honors recognize his commitment to teaching excellence, research leadership, and societal impact in engineering and education. Overall, Dr. Pino Tarragó represents a highly accomplished professional whose expertise, research achievements, and leadership have significantly advanced mechanical engineering and educational practices, positioning him as an influential figure capable of shaping future innovations and mentoring the next generation of engineers globally.

Profiles: Google Scholar | ORCID | LinkedIn | ResearchGate

Featured Publications

  1. Pino Tarragó, J. C.,. (2025). Artificial intelligence and soft skills in civil engineering education: A Latin American curriculum gap with global implications. Research in Globalization, 100307.
    Citations: 20 | H-index: 6

  2. Pino Tarragó, J. C. (2025). Technology and innovative pedagogical strategies in foreign language teaching: Experience at UNESUM. Revista Salud, Ciencia y Tecnología, Q3.
    Citations: 15 | H-index: 6

  3. Pino Tarragó, J. C. (2025). Technology and Gamification in English Teaching for Civil Engineering: A Quasi-Experimental Study. Revista Salud, Ciencia y Tecnología, Q3.
    Citations: 12 | H-index: 6

  4. Pino Tarragó, J. C. (2024). Integrated Wastewater Treatment Technology: Efficiency of Lime and Eichhornia crassipes for Agricultural Irrigation. Revista Salud, Ciencia y Tecnología, Q3.
    Citations: 10 | H-index: 6

  5. Pino Tarragó, J. C. (2024). NEUROTIC in the process of teaching-learning in higher education. Revista Electrónica Formación y Calidad Educativa (REFCalE), 12(3).
    Citations: 8 | H-index: 6

Xingyu Zhou | Engineering | Best Researcher Award

Prof. Dr. Xingyu Zhou | Engineering | Best Researcher Award 

Assistant Professor | Beijing Institute of Technology | China

Dr. Zhou Xingyu, Assistant Professor at the Beijing Institute of Technology, is an accomplished researcher specializing in renewable energy and electric vehicles. He earned his Ph.D. in Vehicle Engineering from Chongqing University in 2020, following a Bachelor’s degree in Mechanical Design, Manufacturing, and Automation from the same institution. Dr. Zhou has extensive professional experience, including his current role as Assistant Professor at the School of Mechanical Engineering and Vehicle Engineering, Beijing Institute of Technology since March 2023, and a postdoctoral fellowship at the same institute from 2020 to 2023, where he contributed to the National Engineering Research Center for Electric Vehicles. His research interests focus on vehicle powertrain optimization, intelligent energy management, stochastic and data-driven modeling, and electric vehicle motion planning for enhanced energy efficiency. He has demonstrated expertise in multi-objective optimization, machine learning applications for powertrain design, and integration of fuel cell and hybrid electric vehicle systems. Dr. Zhou has led and participated in multiple high-impact research projects, including a National Natural Science Foundation of China Youth Project and key provincial and national projects on electric vehicle energy optimization and system integration. He has published 27 Scopus-indexed documents with 448 citations and an h-index of 11, in reputed journals such as Applied Energy, Journal of Power Sources, Journal of Cleaner Production, and IEEE Transactions on Vehicular Technology, serving frequently as corresponding author. His awards and honors include the Best Student Paper Award at the 2018 Italian Conference on Machines and Mechanisms. In addition, he contributes to the academic community as a reviewer for top journals and Guest Editor of Sustainability. Dr. Zhou Xingyu’s strong technical expertise, leadership in research projects, international collaborations, and commitment to sustainable innovation make him a highly deserving candidate for the Best Researcher Award, reflecting both outstanding academic achievements and meaningful contributions to advancing green mobility and energy-efficient transportation solutions globally.

Profiles: Scopus | ORCID

Featured Publications

Sun, C., Zhang, C., Sun, F., & Zhou, X. (2022). Stochastic co-optimization of speed planning and powertrain control with dynamic probabilistic constraints for safe and ecological driving. Applied Energy, 35, 119874.

Zhou, X., Sun, C., Sun, F., & Zhang, C. (2022). Commuting-pattern-oriented optimal sizing of electric vehicle powertrain based on stochastic optimization. Journal of Power Sources, 545, 23178.

Zhou, X., Sun, F., Zhang, C., & Sun, C. (2022). Stochastically predictive co-optimization of speed planning and powertrain controls for electric vehicles driving in random traffic environment safely and efficiently. Journal of Power Sources, 528, 231200.

Zhou, X., Sun, F., Sun, C., & Zhang, C. (2022). Predictive co-optimization of speed planning and powertrain energy management for electric vehicles driving in traffic scenarios: Combining strengths of simultaneous and hierarchical methods. Journal of Power Sources, 523, 230910.

Zhou, X., Sun, F., & Sun, C. (2021). Machine learning aided methods for reducing the dimensionality of the comprehensive energy economy optimization of fuel cell powertrains. Journal of Cleaner Production, 327, 129250.

Naghi Rostami | Engineering | Best Researcher Award

Assoc. Prof. Dr. Naghi Rostami | Engineering | Best Researcher Award 

Faculty of Electrical and Computer Engineering | University of Tabriz | Iran

Dr. Naghi Rostami is an accomplished academic and researcher in electrical power engineering, currently serving as Associate Professor and Head of the Electric Power Engineering Department at the University of Tabriz, Iran, where he has held leadership responsibilities from 2018 to 2024. He completed his B.Sc. in Electrical Engineering at K. N. Toosi University of Technology in 2006, his M.Sc. at the University of Tehran in 2008, and earned his Ph.D. from the University of Tabriz in 2013. He also gained international exposure through a research opportunity at Lappeenranta University of Technology, Finland, in 2012 under the supervision of Prof. Juha Pyrhönen. His primary research interests include permanent magnet machine design, particularly axial flux and radial flux configurations, hybrid electric vehicle energy management, modeling and optimization of electrical machines, and the integration of renewable energy systems with electric vehicles and storage technologies. Dr. Rostami’s research skills span analytical and numerical design methods, genetic algorithms, particle swarm optimization, and advanced co-simulation approaches, which he has applied to the design and performance improvement of permanent magnet machines and energy systems. He has an impressive record of publications in reputable journals such as IEEE Transactions on Magnetics, IET Electric Power Applications, Sustainable Cities and Society, and COMPEL, with many works indexed in Scopus and IEEE Xplore. His Google Scholar profile records more than 1,500 citations with an H-index of 19, highlighting the international recognition of his work. While his CV does not list specific awards and honors, his achievements in leadership, international collaborations, and sustained scholarly contributions stand as testaments to his professional excellence. In conclusion, Dr. Rostami is a dedicated scholar whose expertise, impactful publications, and leadership in academia and research make him a strong candidate for recognition through distinguished awards and honors in the field of electrical power engineering.

Profiles: Google Scholar | LinkedIn | ResearchGate

Featured Publications

  1. Jalilzadeh, T., Rostami, N., Babaei, E., & Maalandish, M. (2018). Nonisolated topology for high step-up DC–DC converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(1), 137–150.(Cited 137 times)

  2. Rostami, N., Feyzi, M. R., Pyrhonen, J., Parviainen, A., & Niemela, M. (2012). Lumped-parameter thermal model for axial flux permanent magnet machines. IEEE Transactions on Magnetics, 49(3), 1178–1184.(Cited 136 times)

  3. Zeynali, S., Rostami, N., Ahmadian, A., & Elkamel, A. (2020). Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: An ANN-based scenario generation methodology. Sustainable Energy Technologies and Assessments, 39, 100722.(Cited 104 times)

  4. Marzang, V., Hosseini, S. H., Rostami, N., Alavi, P., & Mohseni, P. (2020). A high step-up nonisolated DC–DC converter with flexible voltage gain. IEEE Transactions on Power Electronics, 35(10), 10489–10500.(Cited 96 times)

  5. Zeynali, S., Rostami, N., & Feyzi, M. R. (2020). Multi-objective optimal short-term planning of renewable distributed generations and capacitor banks in power system considering uncertainties. International Journal of Electrical Power & Energy Systems, 119, 105885.(Cited 93 times)

Kevin Patel | Engineering | Best Industrial Research Award

Mr. Kevin Patel | Engineering | Best Industrial Research Award

Quality Engineer – Lead | Futaba North America Engineering & Marketing Corp | United States

Kevin Patel is a research-driven quality innovation leader with over a decade of expertise in advanced automotive systems, high-reliability electronics, and cyber-physical manufacturing ecosystems, with a strong focus on AI-enhanced diagnostics, robotic automation, IoT-integrated quality informatics, and adaptive process control for next-generation industrial engineering. He earned his Bachelor of Engineering in Mechanical Engineering from Gujarat Technological University in 2017, followed by a Master of Engineering in Mechanical Engineering from the Illinois Institute of Technology, Chicago, in 2019, where he strengthened his foundations in design, manufacturing, and applied research. Professionally, he has contributed significantly across leading organizations including Futaba North America, Electronic Interconnect, Machined Products Co., and Hindustan Door Oliver, where he led initiatives in AI-driven defect detection, predictive scrap reduction, supplier quality systems, lean manufacturing, and digital process optimization. His research interests lie in the integration of artificial intelligence, IoT, and blockchain for predictive quality, defect prevention, and smart manufacturing ecosystems, with publications in reputed and indexed platforms covering topics such as self-healing production lines, generative quality networks, PCB optimization, and autonomous supplier ecosystems. He possesses strong research and technical skills including CAD and CAE tools (AutoCAD, SolidWorks, CATIA, Abaqus, Ansys), manufacturing quality tools (SPC, CAPA, DoE, DMAIC, Kaizen, GD&T), and advanced industry standards (ISO 9001, IATF 16949, AS9100). His certifications include IATF 16949/ISO 9001 Lead Auditor, Lean Six Sigma Green Belt, SolidWorks CSWA, and Autodesk AutoCAD Professional, reflecting his commitment to continuous professional growth. Kevin has also been recognized for his ability to bridge academic research with industrial application, authoring multiple Scopus and IEEE-indexed papers that demonstrate global relevance. With his multidisciplinary expertise, impactful publications, leadership roles, and future potential in advancing intelligent manufacturing, Kevin Patel stands out as an outstanding candidate for recognition, embodying both academic rigor and industrial innovation.

Profile: ORCID

Featured Publications

  1. Patel, K. (2025). AI-driven defect detection in PCB manufacturing: A computer vision approach using convolutional neural networks. European Journal of Advances in Engineering and Technology.

  2. Patel, K. (2025, July 29). AI+IoT+Blockchain triad for smart traceability in the automotive industry. International Journal of Research and Scientific Innovation.

  3. Patel, K. (2025, June 1). Agentic AI for self-healing production lines: Autonomous root cause analysis & correction. Journal of Information Systems Engineering and Management.

  4. Patel, K. (2025, June 1). Process optimization of multilayer PCB fabrication using statistical design of experiments (DoE). Journal of Information Systems Engineering and Management.

  5. Patel, K. (2025, April 12). Generative quality networks (GQNs): Leveraging GenAI to predict unprecedented defects in automotive manufacturing. International Journal of Science and Research (IJSR).

Akshatha P S | Engineering | Best Researcher Award

Assist. Prof. Dr. Akshatha P S | Engineering | Best Researcher Award

Senior Assistant Professor | New Horizon College of Engineering | India

Dr. Akshatha P. S is a Senior Assistant Professor in the Department of Artificial Intelligence and Machine Learning at New Horizon College of Engineering, Bengaluru, where she has established herself as a committed academician and an innovative researcher. She earned her Ph.D. in Computer Science and Engineering from Bangalore University in 2023, focusing her doctoral research on enhancing the security and reliability of MQTT protocols in IoT networks. With a strong educational foundation and passion for advancing technology, she has accumulated several years of professional experience in teaching, research, and academic coordination, mentoring students while contributing significantly to the growth of her institution. Her research interests span across Computer Networks, Internet of Things, Artificial Intelligence, secure communication systems, and blockchain integration, reflecting her dedication to solving real-world problems through emerging technologies. She possesses excellent research skills, demonstrated by her prolific output of over 49 publications in high-impact platforms including IEEE Q1 journals, Scopus-indexed conferences, and Springer book chapters, along with 12 patents filed in areas such as IoT, AI, and blockchain-based solutions. Beyond research and teaching, Dr. Akshatha has actively engaged in professional memberships with IEEE, ORCID, and Scopus, which highlight her academic presence, while her leadership in organizing workshops, delivering invited talks, and contributing to knowledge dissemination reflects her broader academic and societal impact. Recognized for her contributions, she has been honored with accolades in research and innovation, further strengthening her professional reputation. In conclusion, Dr. Akshatha P. S embodies the qualities of a forward-looking researcher and dedicated educator whose work bridges academia and industry, and with her growing global presence, research vision, and commitment to student development, she continues to emerge as an inspiring figure and a deserving candidate for prestigious recognitions and awards.

Profile: Scopus | ORCID

Featured Publications

  1. Akshatha, P. S., & Dilip Kumar, S. M. (2023). Analysis and evaluation of MQTT brokers for e-Healthcare applications. IEEE Transactions on Industrial Informatics.

  2. Akshatha, P. S., & Dilip Kumar, S. M. (2023). Context-aware enhancement of buffer utilization in MQTT-based IoT communication. International Journal of Communication Networks and Distributed Systems. (In press).

  3. Akshatha, P. S., Divyashree, S., & Dilip Kumar, S. M. (2023). Priority-enabled MQTT: A robust approach to emergency event messaging. Journal of Engineering and Applied Science, Springer. (In press).

  4. Akshatha, P. S., & Dilip Kumar, S. M. (2023). MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency. Blockchain: Research and Applications, Elsevier. (In press).

  5. Akshatha, P. S., Dilip Kumar, S. M., & Venugopal, K. R. (2022). MQTT implementations, open issues, and challenges: A detailed comparison and survey. International Journal of Sensors, Wireless Communications and Control, 12(8), 553–576.

 

Jennifer Blain | Engineering | Best Researcher Award

Prof. Dr. Jennifer Blain | Engineering | Best Researcher Award

Professor of Electrical Engineering at Arizona State University | United States

Dr. Jennifer M. Blain Christen is a distinguished researcher in biomedical engineering with expertise in bio-MEMS, microfluidics, and point-of-care diagnostic systems. Her work focuses on developing innovative sensor technologies and low-cost medical devices that address critical healthcare challenges, including neural implants and hydrocephalus treatment. She has published extensively in leading journals and conferences such as IEEE Transactions, Biosensors and Bioelectronics, and Scientific Reports, with her research widely cited and indexed in Scopus. Beyond research, she has demonstrated strong leadership by mentoring students, guiding interdisciplinary collaborations, and advancing teacher training initiatives to bridge education and innovation. As an active member of professional organizations including IEEE and ACM, Dr. Blain Christen continues to expand her impact globally, contributing to both technological advancement and community-driven healthcare solutions.

Professional Profiles

Google Scholar | Orcid

Education

Dr. Jennifer M. Blain Christen holds a strong academic background in engineering, specializing in biomedical applications of circuits, sensors, and microsystems. She pursued advanced studies that focused on integrating bio-MEMS and microfluidics into healthcare technologies, with a doctoral degree that positioned her at the intersection of engineering and medicine. Throughout her academic journey, she gained expertise in diagnostic device design, neural stimulation systems, and point-of-care applications. Her education emphasized both theoretical foundations and hands-on research, equipping her with the ability to translate engineering principles into real-world medical solutions. With continuous learning as a guiding principle, she has built an educational foundation that not only shaped her career as a researcher but also enabled her to mentor the next generation of scientists and engineers effectively.

Experience

Dr. Jennifer M. Blain Christen has built an extensive professional career that blends academic research, teaching, and leadership in biomedical engineering. She has contributed significantly to interdisciplinary research projects involving medicine, engineering, and biotechnology, with a focus on advancing diagnostic devices and neural interface technologies. Her professional engagements include leading research teams, collaborating with global partners, and guiding students through innovative projects that merge scientific discovery with healthcare needs. She has also played a pivotal role in teacher training programs, ensuring knowledge dissemination across multiple levels of education. In addition, she actively participates in professional organizations, including IEEE and ACM, where she contributes to scientific dialogue and networking. Her professional experience demonstrates a commitment to bridging engineering and healthcare for transformative societal impact.

Research Interest

Dr. Jennifer M. Blain Christen’s research interests lie at the intersection of engineering and medicine, with a particular focus on biomedical circuits, microsystems, and point-of-care diagnostic technologies. She is deeply engaged in the design and development of microfluidic systems, neural implants, and low-cost healthcare devices that improve patient outcomes and accessibility. Her work also explores the integration of sensors, electronic circuits, and bio-MEMS to create innovative diagnostic tools with applications in neurological disorders, infectious disease detection, and resource-limited settings. She is motivated by the goal of delivering affordable, efficient, and scalable healthcare technologies that can address global challenges. Her research interests reflect a strong vision of advancing personalized medicine and providing sustainable solutions through engineering innovation and cross-disciplinary collaboration.

Awards and Honors

Dr. Jennifer M. Blain Christen has been recognized with numerous awards and honors that reflect her dedication to research excellence and academic leadership. These accolades highlight her innovative contributions to biomedical device development and her impact on the broader scientific community. Her recognition spans achievements in research publications, collaborative projects, and mentorship, underscoring her ability to translate engineering knowledge into meaningful healthcare advancements. She has also received acknowledgment from professional organizations and conferences where her work has been showcased for its originality, quality, and potential for global impact. These awards stand as a testament to her sustained contributions, professional excellence, and role as a thought leader in biomedical engineering. They further reinforce her status as a deserving recipient of prestigious research recognitions.

Research Skills

Dr. Jennifer M. Blain Christen possesses a diverse range of research skills that strengthen her ability to innovate in biomedical engineering. Her expertise spans microfabrication, circuit design, and microfluidics, enabling the development of advanced point-of-care diagnostic platforms. She is adept in biosensor integration, neural interface technologies, and device prototyping, allowing her to transform concepts into functional healthcare solutions. She demonstrates strong analytical and problem-solving abilities, applying them to design experiments, interpret data, and optimize system performance. Equally proficient in interdisciplinary collaboration, she brings together engineering, biology, and medicine to address complex challenges. Her skills also extend to mentoring, project management, and scientific communication, reflecting a holistic research capacity. Collectively, these skills highlight her as a versatile researcher capable of driving impactful innovations.

Publication Top Notes

Title: Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation
Year: 2007
Citation: 104

Title: Eccrine sweat as a biofluid for profiling immune biomarkers
Year: 2018
Citation: 87

Title: Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity
Year: 2014
Citation: 81

Title: A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications
Year: 2018
Citation: 60

Title: Seamless integration of CMOS and microfluidics using flip chip bonding
Year: 2013
Citation: 60

Title: Application of flexible OLED display technology to point-of-care medical diagnostic testing
Year: 2016
Citation: 58

Title: Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers
Year: 2016
Citation: 50

Title: Experimental and simulated cycling of ISFET electric fields for drift reset
Year: 2013
Citation: 44

Title: Application of flexible flat panel display technology to wearable biomedical devices
Year: 2015
Citation: 37

Title: Biosensing platform on a flexible substrate
Year: 2015
Citation: 34

Title: Real-time feedback control of pH within microfluidics using integrated sensing and actuation
Year: 2014
Citation: 34

Title: Energy-efficient image recognition system for marine life
Year: 2020
Citation: 29

Title: Demonstration of spike timing dependent plasticity in CBRAM devices with silicon neurons
Year: 2016
Citation: 25

Title: A self-powered single-axis maximum power direction tracking system with an on-chip sensor
Year: 2015
Citation: 22

Title: Fully differential current-mode MEMS dual-axis optical inclination sensor
Year: 2013
Citation: 22

Title: Optogenetic neurostimulation of auricular vagus using flexible OLED display technology to treat chronic inflammatory disease and mental health disorders
Year: 2016
Citation: 21

Title: Integrated high-resolution untethered flexible neural implant
Year: 2020
Citation: 20

Title: System and method for ion-selective, field effect transistor on flexible substrate
Year: 2019
Citation: 19

Title: Pulse width modulation circuit for ISFET drift reset
Year: 2013
Citation: 18

Title: On-chip sensor for light direction detection
Year: 2013

Conclusion

In conclusion, Dr. Jennifer M. Blain Christen is a highly accomplished researcher and leader whose contributions to biomedical circuits, microfluidics, and point-of-care diagnostics have significantly advanced healthcare innovation. Her strong educational foundation, coupled with extensive professional experience and interdisciplinary research, positions her as a global authority in biomedical engineering. She has combined her technical expertise with visionary thinking to create low-cost, accessible healthcare solutions that address pressing medical needs. With numerous publications, awards, and active involvement in professional organizations, she continues to influence both academic and professional communities. Her dedication to mentoring and knowledge sharing further underscores her commitment to shaping future innovators. Dr. Blain Christen’s impactful career demonstrates excellence, leadership, and an enduring drive to bridge engineering and medicine for societal benefit.

Soheila Kookalani | Engineering | Best Paper Awards

Dr. Soheila Kookalani | Engineering | Best Paper Award

Research Associate at Cambridge University, United Kingdom

Dr. Soheila Kookalani is a distinguished researcher in civil and structural engineering, specializing in artificial intelligence, machine learning, sustainable construction, and digital twin technologies. Currently a Research Associate at the University of Cambridge, her work focuses on steel reuse, circular economy, and structural optimization to promote sustainable infrastructure. She earned her Ph.D. in Civil and Structural Engineering from Shanghai Jiao Tong University, supported by strong academic training at Hohai University and Azad University. With an impressive publication record in high-impact journals and international conferences, she has advanced knowledge in structural design automation and resilient construction practices. Beyond research, she contributes as a reviewer, editorial board member, guest editor, and invited speaker, while also teaching and mentoring students. Her achievements demonstrate academic excellence, global collaboration, and leadership in advancing sustainable engineering solutions.

Professional Profile

Education

Dr. Soheila Kookalani has built a strong academic foundation across globally recognized institutions. She earned her Ph.D. in Civil and Structural Engineering from Shanghai Jiao Tong University, where her research explored structural optimization and machine learning applications for gridshell structures. She completed her Master’s degree in Civil and Structural Engineering at Hohai University, focusing on the seismic performance of steel-concrete hybrid structures, following a Bachelor’s in Architectural Engineering from Azad University, where she developed hybrid architecture concepts for sustainable design. This academic journey provided her with multidisciplinary expertise spanning architecture, civil engineering, and computational modeling. Her progression from undergraduate through doctoral studies highlights a consistent dedication to merging innovative design with engineering principles, forming the basis for her later research on sustainable construction, digital twins, and artificial intelligence-driven structural design.

 Experience

Dr. Kookalani is currently a Research Associate in Construction Engineering at the University of Cambridge, where she leads work on sustainable construction practices, including steel reuse, circular economy applications, and digital twin technologies. Her role has involved collaboration with international partners and industry stakeholders to develop innovative solutions for life cycle assessment and sustainable design. She has actively contributed to teaching and supervision at Cambridge, engaging with undergraduate and postgraduate students in mechanics, aerodynamics, and structural engineering courses. Previously, she undertook significant academic and research roles during her studies in China, working on advanced computational and structural analysis projects. Her professional experience is distinguished by its combination of high-impact research, curriculum development, knowledge transfer, and industry collaboration, positioning her as a bridge between academic innovation and practical engineering applications.

Research Interest

Dr. Kookalani’s research interests are centered on sustainable structural engineering and the integration of advanced technologies into civil infrastructure. She focuses on steel reuse, structural optimization, circular economy approaches, and life cycle assessment to advance sustainable design practices. Her expertise in artificial intelligence, machine learning, and deep learning enables her to apply advanced computational models to construction automation, lightweight structures, and generative design. She is also deeply engaged in digital twin applications, building information modeling, and robotics for the built environment, reflecting a forward-looking vision for smart and adaptive construction systems. Her interdisciplinary approach connects materials science, computational engineering, and sustainability, making her research highly relevant for addressing global challenges in resource efficiency, climate change mitigation, and infrastructure resilience.

Awards and Honors

Dr. Kookalani has earned multiple academic honors in recognition of her scholarly excellence and dedication. She received a full scholarship from Shanghai Jiao Tong University to pursue her Ph.D., reflecting her strong academic merit and research potential. Prior to that, she was awarded a scholarship for her Master’s studies at Hohai University. During her undergraduate years at Azad University, she was consistently recognized as a top student in architectural design courses, with her projects highlighted for their creativity and development. She also served as a member of the student board at the Architecture Engineering Scientific Association, demonstrating early leadership and academic engagement. These achievements reflect a trajectory of sustained academic distinction, research innovation, and leadership, laying a strong foundation for her ongoing success as a global researcher in sustainable engineering.

Research Skill

Dr. Kookalani possesses a comprehensive set of research skills that combine computational expertise, engineering knowledge, and interdisciplinary applications. She is proficient in programming languages such as Python and MATLAB, and advanced software including Abaqus, AutoCAD, Revit, Rhino, Grasshopper, Etabs, and SAP2000, enabling her to model, analyze, and optimize complex structures. Her technical expertise extends to machine learning, digital twins, life cycle assessment, and environmental product declarations, aligning with her sustainability-focused research. She is adept in data-driven modeling, structural performance prediction, and optimization techniques such as swarm intelligence and support vector machines. In addition, she has experience in visualization tools like Lumion, Blender, and Adobe Suite, enhancing her ability to present research outputs effectively. These skills empower her to bridge advanced computational methods with practical engineering solutions for sustainable construction.

Publication Top Notes

Title: Trajectory of Building and Structural Design Automation from Generative Design Towards the Integration of Deep Generative Models and Optimization: A Review
Authors: Soheila Kookalani, E. Parn, I. Brilakis, S. Dirar, M. Theofanous, A. Faramarzi, M. Mahdavipour, Q. Feng
Year: 2024
Citation: Journal of Building Engineering, 97:110972

Title: Shape Optimization of GFRP Elastic Gridshells by the Weighted Lagrange Ε-Twin Support Vector Machine and Multi-Objective Particle Swarm Optimization Algorithm Considering Structural Weight
Authors: Soheila Kookalani, B. Cheng, S. Xiang
Year: 2021
Citation: Structures, 33:2066–2084

Title: Structural Performance Assessment of GFRP Elastic Gridshells by Machine Learning Interpretability Methods
Authors: Soheila Kookalani, B. Cheng, J. L. Chavez Torres
Year: 2022
Citation: Frontiers of Structural and Civil Engineering, 16:1249–1266

Title: Form-Finding of Lifting Self-Forming GFRP Elastic Gridshells Based on Machine Learning Interpretability Methods
Authors: Soheila Kookalani, S. Nyunn, S. Xiang
Year: 2022
Citation: Structural Engineering and Mechanics, 84(5):605–618

Title: An Overview of Optimal Damper Placement Methods in Structures
Authors: Soheila Kookalani, D. Shen, L. Zhu, M. Lindsey
Year: 2021
Citation: Iranian Journal of Science and Technology – Transactions of Civil Engineering, 46:1785–1804

Title: An Analytic Solution for Form Finding of GFRP Elastic Gridshells during Lifting Construction
Authors: S. Xiang, B. Cheng, Soheila Kookalani
Year: 2020
Citation: Composite Structures, 244:112290

Title: An Analytic Approach to Predict the Shape and Internal Forces of Barrel Vault Elastic Gridshells during Lifting Construction
Authors: S. Xiang, B. Cheng, Soheila Kookalani, J. Zhao
Year: 2021
Citation: Structures, 29:628–637

Title: An Integrated Approach of Form Finding and Construction Simulation for Glass Fiber-Reinforced Polymer Elastic Gridshells
Authors: S. Xiang, B. Cheng, L. Zou, Soheila Kookalani
Year: 2020
Citation: Structural Design of Tall and Special Buildings, 29(5):e1698

Title: Introduction of Methodology for BIM & DSS
Authors: H. Alavi, Soheila Kookalani, F. Rahimian, N. Forcada
Year: 2024
Citation: Integrated Building Intelligence, pp. 31–42

Title: BIM-Based DSS for HVAC Root-Cause Detection
Authors: H. Alavi, Soheila Kookalani, F. Rahimian, N. Forcada
Year: 2024
Citation: Integrated Building Intelligence, pp. 43–57

Title: BIM-Based DSS for Building Condition Assessment
Authors: H. Alavi, Soheila Kookalani, F. Rahimian, N. Forcada
Year: 2024
Citation: Integrated Building Intelligence, pp. 59–78

Title: BIM-Based DSS for Enhancing Occupants’ Comfort
Authors: H. Alavi, Soheila Kookalani, F. Rahimian, N. Forcada
Year: 2024
Citation: Integrated Building Intelligence, pp. 79–99

Title: BIM-Based Augmented Reality for Facility Maintenance Management
Authors: H. Alavi, Soheila Kookalani, F. Rahimian, N. Forcada
Year: 2024
Citation: Integrated Building Intelligence, pp. 101–112

Title: GFRP Elastic Gridshell Structures: A Review of Methods, Research, Applications, Opportunities, and Challenges
Authors: Soheila Kookalani, Htay Htayaung
Year: 2023
Citation: Journal of Civil Engineering and Materials Application

Title: Structural Analysis of GFRP Elastic Gridshell Structures by Particle Swarm Optimization and Least Square Support Vector Machine Algorithms
Authors: Soheila Kookalani, B. Cheng
Year: 2021
Citation: Journal of Civil Engineering and Materials Application

Title: Effect of Fluid Viscous Damper Parameters on the Seismic Performance
Authors: Soheila Kookalani, D. Shen
Year: 2020
Citation: Journal of Civil Engineering and Materials Application, 4(3)

Title: An Overview of the Particle Swarm Optimization Algorithms Applied to Optimization of Structures
Authors: Soheila Kookalani
Year: 2019
Citation: Civil Engineering Journal, 5(11):2336–2349

Title: Analysis and Optimal Location of Fluid Viscous Dampers for Multistory Irregular Steel Structures under Seismic Excitation
Authors: Soheila Kookalani, M. Daneshvaran, M. Noori
Year: 2019
Citation: Civil Engineering Journal, 5(7):1594–1607

Title: Optimal Viscous Damper Location for Multi-Story Steel Structures by Genetic Algorithm
Authors: Soheila Kookalani, S. Arabzadeh, M. Noori
Year: 2018
Citation: Civil Engineering Journal, 4(11):2590–2601

Title: Optimal Placement of Fluid Viscous Dampers in Steel Structures Subjected to Seismic Excitation by Genetic Algorithm
Authors: Soheila Kookalani, S. Arabzadeh, M. Noori
Year: 2018
Citation: Civil Engineering Journal, 4(5):1061–1072

Conclusion

Dr. Soheila Kookalani is an innovative and forward-thinking researcher whose career integrates civil engineering, artificial intelligence, and sustainability. With strong academic credentials, professional experience at leading institutions, and a significant publication record, she has made meaningful contributions to the advancement of structural optimization, digital construction, and sustainable design. Her work has influenced both academia and industry by offering scalable solutions for steel reuse, resilient infrastructure, and circular economy practices. Beyond research, her leadership through teaching, editorial activities, conference committees, and invited talks reflects her commitment to knowledge sharing and community impact. Recognized with prestigious scholarships and awards, she continues to expand her global collaborations and research impact. Dr. Kookalani exemplifies academic excellence, technical innovation, and societal contribution, making her a valuable contributor to the future of sustainable engineering.